Six years after the discovery of the Higgs boson, ATLAS and CMS have announced that they have observed its decay into bottom quarks. The result was presented on 28 August at CERN by the two collaborations.
The Standard Model of particle physics predicts that about 60% of the time a Higgs boson will decay to a pair of bottom quarks, the second-heaviest of the six flavours of quarks. Testing this prediction is crucial because the result would either lend support to the Standard Model or rock its foundations and point to new physics.
Spotting this common Higgs-boson decay channel is anything but easy, as the six-year period since the discovery of the boson has shown. The reason for the difficulty is that there are many other ways of producing bottom quarks in proton–proton collisions. This makes it hard to isolate the Higgs-boson decay signal from the background “noise” associated with such processes. By contrast, the less-common Higgs-boson decay channels that were observed at the time of discovery of the particle, such as the decay to a pair of photons, are much easier to extract from the background.
To extract the signal, the ATLAS and CMS collaborations each combined data from the first and second runs of the LHC. They then applied complex analysis methods to the data.
Read the full article here.
For more information, see the ATLAS and CMS websites.